Localization of Unitary Braid Group Representations
نویسندگان
چکیده
Governed by locality, we explore a connection between unitary braid group representations associated to a unitary R-matrix and to a simple object in a unitary braided fusion category. Unitary R-matrices, namely unitary solutions to the Yang-Baxter equation, afford explicitly local unitary representations of braid groups. Inspired by topological quantum computation, we study whether or not it is possible to reassemble the irreducible summands appearing in the unitary braid group representations from a unitary braided fusion category with possibly different positive multiplicities to get representations that are uniformly equivalent to the ones from a unitary R-matrix. Such an equivalence will be called a localization of the unitary braid group representations. We show that the q = e specialization of the unitary Jones representation of the braid groups can be localized by a unitary 9× 9 R-matrix. Actually this Jones representation is the first one in a family of theories (SO(N), 2) for an odd prime N > 1, which are conjectured to be localizable. We formulate several general conjectures and discuss possible connections to physics and computer science.
منابع مشابه
Irreducibility of the tensor product of Albeverio's representations of the Braid groups $B_3$ and $B_4$
We consider Albeverio's linear representations of the braid groups $B_3$ and $B_4$. We specialize the indeterminates used in defining these representations to non zero complex numbers. We then consider the tensor products of the representations of $B_3$ and the tensor products of those of $B_4$. We then determine necessary and sufficient conditions that guarantee the irreducibility of th...
متن کاملar X iv : 0 70 6 . 17 61 v 1 [ qu an t - ph ] 1 2 Ju n 20 07 From Extraspecial Two - Groups To GHZ states
In this paper we explore natural connections among extraspecial 2-groups, almost-complex structures, unitary representations of the braid group and the Greenberger-Horne-Zeilinger (GHZ) states. We first present new representations of extraspecial 2-groups in terms of almost-complex structures and use them to derive new unitary braid representations as extensions of representations of the extras...
متن کاملFrom Extraspecial Two-Groups To GHZ States
In this paper we explore natural connections among extraspecial 2-groups, almost-complex structures, unitary representations of the braid group and the Greenberger-Horne-Zeilinger (GHZ) states. We first present new representations of extraspecial 2-groups in terms of almost-complex structures and use them to derive new unitary braid representations as extensions of representations of the extras...
متن کاملMajorana Fermions and Representations of the Braid Group
In this paper we study unitary braid group representations associated with Majorana Fermions. Majorana Fermions are represented by Majorana operators, elements of a Clifford algebra. The paper recalls and proves a general result about braid group representations associated with Clifford algebras, and compares this result with the Ivanov braiding associated with Majorana operators. The paper gen...
متن کاملAbstract error groups via Jones unitary braid group representations at q = i
In this paper, we classify a type of abstract groups by the central products of dihedral groups and quaternion groups. We recognize them as abstract error groups which are often not isomorphic to the Pauli groups in the literature. We show the corresponding nice error bases equivalent to the Pauli error bases modulo phase factors. The extension of these abstract groups by the symmetric group ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010